

Journal of Molecular Science

www.jmolecularsci.com

ISSN:1000-9035

Molecular Innovation in Pharmaceutical Chemistry: Pathways to Drug Design

Vishva S. Patel¹, Pallavi U. Barabde², Bhawana P. Jadhav³, Jitendra O. Bhangale⁴¹Associate Professor, Smt. N. M. Padalia Pharmacy College, Ahmedabad, Gujarat, 382210, India²Assistant Professor, Smt. N. M. Padalia Pharmacy College, Ahmedabad, Gujarat, 382210, India³Assistant Professor, Smt. N. M. Padalia Pharmacy College, Ahmedabad, Gujarat, 382210, India⁴Professor and Principal, Smt. N. M. Padalia Pharmacy College, Ahmedabad, Gujarat, 382210, India**Article Information**

Received: 04-11-2025

Revised: 13-11-2025

Accepted: 28-11-2025

Published: 22-12-2025

Keywords*Drug Design, Structure Activity Relationship, Computational Drug Discovery, Artificial Intelligence, Green Chemistry***ABSTRACT**

The journey from a chemical molecule to a clinically approved medicine is a complex, multidisciplinary process that lies at the heart of pharmaceutical chemistry. Recent innovations in drug design have transformed this pathway by integrating advances in medicinal chemistry, computational modeling, synthetic methodologies, and translational sciences. This review highlights the evolving strategies employed in modern pharmaceutical chemistry, focusing on rational drug design, structure–activity relationship (SAR) optimization, and the application of artificial intelligence and machine learning in lead identification and optimization. Emerging synthetic technologies, including green chemistry, continuous-flow synthesis, and biocatalysis, are accelerating compound development while improving sustainability and scalability. Furthermore, advances in analytical and biophysical techniques have enhanced the understanding of drug–target interactions, pharmacokinetics, and safety profiles at early stages of development. By bridging molecular innovation with therapeutic application, pharmaceutical chemistry continues to play a pivotal role in improving drug efficacy, reducing attrition rates, and addressing unmet medical needs. This article provides an integrated perspective on how innovative chemical approaches are shaping the future of drug discovery and development.

©2025 The authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers. (<https://creativecommons.org/licenses/by-nc/4.0/>)

structure influences biological activity, efficacy and safety.

In drug discovery, pharmaceutical chemistry is crucial for identifying, designing, and optimizing new chemical compounds with therapeutic potential.

This involve transforming a disease target into a viable drug candidate by understanding

disease biology and applying medicinal chemistry principles to improve a compound's affinity, selectivity, efficacy, safety, and pharmacokinetic properties.

Molecule to Medicine refers to the multidisciplinary process of converting a specific chemical entity into a safe and effective therapeutic agent.¹⁻⁴

1. INTRODUCTION:¹⁻⁴

Pharmaceutical Chemistry is a multidisciplinary science that applies principles of chemistry, biology, and pharmacology to the design, synthesis and development of therapeutic agents or disease management and improved health outcomes.

It Combines principles of organic chemistry, medicinal chemistry, biochemistry, and pharmacology to understand how chemical

Drug discovery process: A Molecule to Medicine pathway^{5,6}

The drug discovery process begins with target identification, where a biological target such as an enzyme, receptor, or protein involved in disease is selected based on its structure and function, forming the basis for rational drug design. This is followed by lead molecule discovery, in which potential compounds interacting with the target are identified through screening, computational approaches, or natural sources. These leads then undergo optimization, where chemical modifications improve their potency, selectivity, and stability. The optimized molecules are evaluated for pharmacokinetic and pharmacodynamic properties, including absorption, distribution, metabolism, excretion, and biological response, to ensure effective target engagement. Toxicity and safety assessments are conducted to eliminate harmful candidates, after which promising compounds proceed to preclinical studies involving laboratory and animal testing to establish efficacy and appropriate dosing. Successful candidates advance to clinical development, where human trials assess safety and therapeutic effectiveness, and ultimately, compounds that meet all requirements receive regulatory approval, are developed into medicines, and continue to be monitored post-marketing for long-term safety and efficacy.

Innovations in synthetic and medicinal chemistry are central to shortening the drug-discovery timeline, improving candidate quality, and enabling therapeutic strategies that were previously infeasible.

Innovation in Chemistry significantly accelerates drug design by creating novel, targeted molecules faster and more efficiently, reducing costs and improving outcomes.

2. Historical Evaluation of Drug Design

This phrase refers to how the process of discovering and creating drugs has developed over time - from ancient practices to the highly scientific and technology driven method we use today.

The Historical evolution of drug design traces how drug discovery moved from traditional remedies - chemical isolation - rational and target-based approaches - biotech and computational tools⁷.

3. Evolution of Drug Discovery: A Historical Timeline

Drug discovery has evolved through several distinct phases over time. In the ancient era (before 1800), medicines were discovered empirically through the use of natural substances from plants,

animals, and minerals, with knowledge based mainly on observation and traditional practices, such as the use of willow bark (aspirin source) and opium poppy (morphine source). During the 19th century, advances in chemistry enabled the isolation and purification of active principles from natural sources, leading to well-defined compounds like morphine, quinine, and caffeine and marking the birth of pharmacology and medicinal chemistry. In the early 20th century (1900–1940), progress in organic synthesis allowed the development of fully synthetic drugs, the exploration of structure–activity relationships (SAR), and the establishment of pharmaceutical industries, with key discoveries including aspirin, barbiturates, and sulphonamides. The mid-20th century (1940–1960) witnessed the antibiotic revolution, which transformed infectious disease treatment through the discovery of drugs such as penicillin, streptomycin, and tetracyclines using fermentation and microbial screening techniques. Between 1960 and 1980, improved understanding of disease mechanisms and receptor theory led to rational drug design, the emergence of receptor-based pharmacology, and the development of important drug classes such as β -blockers and ACE inhibitors, supported by advances in analytical and synthetic methods. The period from 1980 to 2000 was dominated by biotechnology and molecular biology, with recombinant DNA technology enabling the production of protein- and peptide-based drugs like insulin and growth hormone, the development of monoclonal antibodies, and precise molecular target identification. From 2000 to 2010, high-throughput screening (HTS), genomics, combinatorial chemistry, and bioinformatics allowed rapid screening of large compound libraries and deeper insights into disease biology. In the modern era (2010 to present), drug discovery has become increasingly data-driven, integrating computational methods, artificial intelligence, and machine learning for *in silico* drug design, virtual screening, ADMET prediction, and the advancement of personalized and precision medicine.

Breakthroughs in Organic Synthesis: A Comprehensive Review

Organic Synthesis: The Construction of Complex molecule from simpler starting material – has undergone transformative advances over the past century. Each new methodology has expanded the chemistry's ability to design, assemble, and modify molecule with unprecedented precision.⁸⁻¹⁰

Table 1: Major Breakthroughs in Organic Synthesis

Sr. No.	Breakthrough	Impact
1.	Retrosynthesis analysis	Systematic planning of Synthesis
2.	Cross- coupling reactions	C-C bond formation, modular synthesis

3.	Asymmetric Catalysis	Enantioselective Synthesis
4.	Organocatalysis	Metal – free catalysis, greener chemistry
5.	Click Chemistry	Fast, high yield bioorthogonal reactions
6.	Photo redox catalysis	Mild radical reactions using light
7.	Flow chemistry	Continues production, Safety

Transition from serendipity to rational design:

The development of new molecules whether drugs, catalysts, or functional materials has historically evolved from largely trial and error experimentation to a more deliberate knowledge driven strategy. This shift often summarized as “from serendipity to rational design”

Serendipity refers to unexpected, chance discoveries arising from observation rather than targeted hypothesis. E.g. Penicillin (1928): Alexander Fleming's accident discovery of the mold's antibacterial effect.

Rational design uses structural, mechanistic, and computational knowledge to guide the deliberate creation of molecule with specific properties. E.g. Captopril (First ACE inhibitor): Designed based on the active site of ACE.

Prototype Drugs Reflecting Molecule-to-Medicine Innovation:

The Concept of molecule to medicine describes the complete path from identifying a bioactive molecule to developing it into an approved therapeutic product. They reflecting how multidisciplinary advances in organic synthesis, structural biology, computational chemistry, and formulation sciences translate scientific ideas into lifesaving therapies.

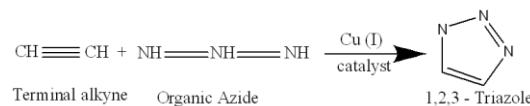
3. INNOVATIONS IN PHARMACEUTICAL ORGANIC CHEMISTRY

Innovations in Pharmaceutical Organic Chemistry have transformed drug discovery landscape. Breakthrough in catalysis, Stereoselective synthesis, Green Chemistry and Computational tool have accelerated timeline, improved success rate and reduced environmental impact.

Over the past few decades innovations in this field have accelerated the molecule to medicine journey, reduced costs and opened entirely new therapeutics possibilities.

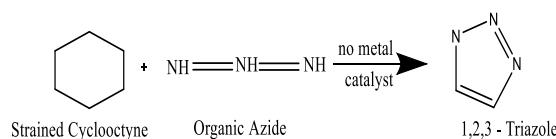
Modern Synthetic Strategies

Modern synthetic strategies aim to create complex molecules more efficiently selectively, and sustainably. Four major approaches 1) Green and Sustainable chemistry 2) Click Chemistry and bioorthogonal reactions, 3) Asymmetric and Stereoselective synthesis 4) late-stage


functionalization have become pillars of contemporary pharmaceutical synthesis.

Green and Sustainable chemistry: Green chemistry is the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Sustainable chemistry is the application of these principles to ensure an ecological sound and enduring development. The main Goal behind this chemistry to prevent pollution at its source and minimize harmful impacts on health society, and the environment. E.g Green Solvent: Developing solvents that are less toxic, biodegradable and derived from renewable Resources.¹¹⁻¹³

Click chemistry and Bio-orthogonal reaction:


Click chemistry refers to a set of highly reliable, modular, and efficient reactions that click molecular building blocks together under mild conditions.

E.g Terminal alkyne + Organic azide \longrightarrow 1,2,3 – triazole (with Cu(I) catalyst)

Bio-orthogonal coined by Carolyn Bertozzi a subset of click reactions specifically designed to occur inside living systems without interfering with native biochemical processes.

E.g Strained cyclooctyne + azide \longrightarrow Triazole without metal catalyst, allowing *in vivo* labelling of biomolecules.

Asymmetric and Stereoselective synthesis:

Asymmetric synthesis is a chemical reaction that produces unequal amounts of different stereoisomers from achiral starting materials, creating new chiral units within a molecule. Stereoselective synthesis is a broader term encompassing asymmetric synthesis and other reactions that favour the formation of one stereoisomer over others. Asymmetric and Stereoselective synthesis underpin modern medicinal chemistry and material science. By designing reactions to control stereochemistry, Chemist can create molecules with precise biological and physical properties, reducing costs, improving efficiency and expanding reach of synthetic chemistry into complex natural product

and drug synthesis.^{14,15}

Late-stage functionalization: Late-stage functionalization is a powerful synthetic strategy in organic chemistry that introduce chemical groups to complex molecules in the final stages of a synthesis, often by transforming unreactive C-H bonds. LSF accelerates drug discovery by creating diverse molecular libraries and exploring new chemical space, leading to more efficient and effective development of valuable molecules. Late-stage functionalization is the direct modification of complex molecules often at the final or near final stages of synthesis without the need to deconstruct and rebuild the entire molecule. E.g Paclitaxel (Taxol): Selective hydroxylation of inactivated C-H bonds: Generation of novel analogues with altered biological activity.^{16,17}

Table 2: Comparison of classical vs. modern synthetic methods

Sr. No .	Features	Classical Synthetic Methods	Modern Synthetic Methods
1.	Reaction Design	Stepwise synthesis with protective group; focusing on reactivity	Direct transformation ; focus on selectivity & efficiency
2.	Selectivity	Limited stereoselectivity; often mixtures of isomers	High stereoselectivity/ asymmetry using chiral catalysts, auxiliaries and enzymes
3.	Catalysis	Stoichiometric reagents; harsh conditions	Catalytic mild, often metal-catalysed or organocatalytic reactions
4.	Functional Group Tolerance	Low need protecting/deprotecting strategies	High late-stage functionalization possible without protection
5.	Environmental Impact	Large solvent usage; toxic reagents	Green and Sustainable chemistry safe solvents and reagents
6.	Energy Demand	High Temperatures and Pressures	Mild conditions, photoredox, microwave or flow chemistry

4. Computational & Ai-Driven Approaches:

Drug discovery has evolved from serendipity driven screening to rational, computation-guided design. Today, Computational chemistry and AI accelerate every stage from target identification to clinical candidate selection- reducing cost, time, and attrition. Core Computational Techniques: 1) Structure based drug design 2) Ligand based drug design 3) Molecular docking & dynamics

simulations 4) AI & Machine learning in lead optimization and de novo drug design 5) Virtual chemical libraries & DNA- encoded libraries.¹⁸⁻²²

Structure based drug design: It is a drug discovery method that uses the 3D Structure of biological targets, such as proteins or nucleic acids, to guide the design of new drug molecules. This approach is more cost effective and faster than traditional method, making drug discovery more efficient. It refers to the fact that experimental structural data of the macromolecule of the drug-receptor complex is involved in the modelling process explicitly.

The Concepts of structure based or receptor-based drug design predate the use of computers. Bedell and coworkers are credited in 1976 with successfully predicting compounds bind to human hemoglobin. Although not strictly a drug – receptor interaction, the approach demonstrated the feasibility of molecular modelling applied to drug design.²³

Ligand based drug design: It is a method that uses knowledge of known molecules (ligands) that bind to a biological target to discover new drugs, without requiring knowledge of the Target's three – dimensional structure. This technique employs computational tools like pharmacophore modelling to identify common structural features of active ligands and Quantitative Structure Activity Relationship modelling to correlate chemical properties with biological activity. Ligand based Drug Design bridges the gap between chemistry and biology contributing significantly to the transformation “From Molecule to Medicine”. It exemplifies innovation in pharmaceutical chemistry by integrating computational, statistical, and chemical insight to accelerate modern drug discovery.²³

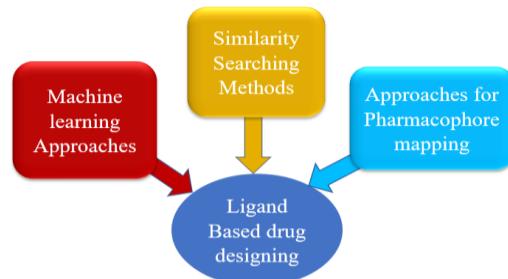


Figure 1: Ligand Based drug designing

Molecular docking & dynamics simulations: Molecular docking and dynamics simulations are computational methods used in drug discovery and molecular biology to study how molecules interact. Molecular docking predicts the static binding pose

Journal of Molecular Science

and orientation of a ligand within a target protein's active site. These techniques are often used sequentially, with docking identifying potential binding modes and molecular dynamics simulation then validating and refining these finding by capturing dynamic effects. Molecular docking is a computer-based method used to predict the preferred orientation of a ligand when bound to a target protein to form a stable complex. Molecular dynamics simulations study the time dependent behaviour of a molecular system by calculating the movements of atoms and molecules over time based on physical laws.²⁴

AI & Machine learning in lead optimization and de novo drug design: AI and Machine learning revolutionize lead optimization by refining drug candidate's effectiveness and safety and drive de novo drug design by generating entirely new molecules with desired properties. These technologies analyze vast datasets to predict molecular structures, efficacy, toxicity, and interactions with targets, accelerating the discovery process by reducing experiments and improving candidate selection through predication modelling and interactive generation filter score prune (GFSP) cycles.

AI And ML are computational approaches that learn from existing data to make predictions, recognize pattern, and generate new molecular structures. In Pharmaceutical chemistry, these technologies are used to 1) Predict Molecular activity and toxicity 2) Optimize lead compounds 3) Design new drug like molecules. Lead optimization is the process of modifying chemical structures of lead compounds to improve their **efficacy, selectivity, pharmacokinetics, and safety.** De novo drug design involves **generating entirely new molecular structures** that can bind to a target protein, using computational or AI-driven approaches.^{25,26}

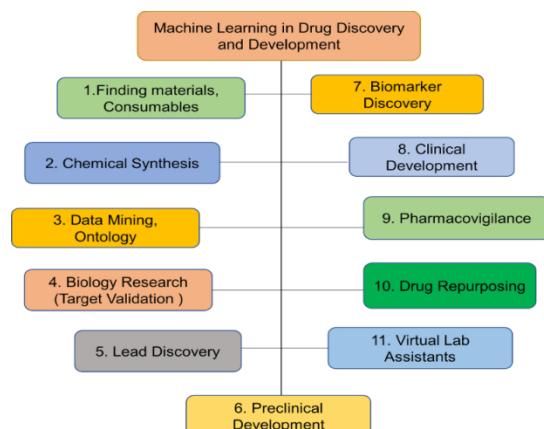


Figure 2: Machine Learning in Drug Discovery and Development

Virtual chemical libraries & DNA- encoded libraries: Virtual chemical libraries are computer generated data bases of potential drug molecules, while DNA- encoded libraries are physical collections of compounds where each molecule is linked to a DNA "barcode" for identification and screening. DELs are produced through multi – step combinatorial synthesis and screened against target proteins with binding molecules identified by sequencing their attached DNA tags. The technology combines the vast scale of virtual libraries with the practical screening capabilities of biological display techniques, allowing for the discovery of drug candidates.

5. Analytical and Characterization Advances:

Major advancement in analytical and characterization techniques have revolutionized the "Molecule to Medicine" pipeline, making drug development faster, more efficient, and more precise. Analytical and Characterization Advances are the backbone of modern pharmaceutical innovation. They ensure that each step from molecule identification to final dosage form meet scientific, regulatory and therapeutics standard making the journey from molecule to medicine both reliable and efficient.

The Review highlights recent advances in analytical instrumentation and characterization Methodologies including Spectroscopic (NMR, MS, IR UV-Vis), Chromatographic (HPLC, UPLC, GC-MS), and hybrid techniques (LC-MS/MS, LC-NMR). The application of modern Strategies such as Process Analytical Technology, Quality by Design, and automation has transformed the efficiency and reliability of drug development. Moreover, the characterization of nanomedicines, biologics, and complex formulations presents new analytical sciences continue to bridge the gap between molecular discovery and therapeutics application, paving the way for safer and more effective medicines.^{27,28}

6. Challenges In Modern Drug Design:

Modern drug discovery faces several interconnected scientific and translational challenges that influence the success rate of new therapeutic development.

Drug resistance remains one of the most critical obstacles, particularly in antibiotics and oncology. In infectious diseases, widespread antimicrobial misuse and the emergence of multi-drug-resistant pathogens reduce the effectiveness of existing agents, demanding novel scaffolds and mechanisms of action.

In cancer, tumour heterogeneity, adaptive signalling pathways, and target mutations (e.g., EGFR, BCR-

ABL, KRAS) frequently lead to acquired resistance, requiring next-generation inhibitors, combination therapies, or multi-target strategies. Safety and toxicity issues further complicate development; off-target interactions, metabolic liabilities, immunogenicity, and long-term toxicity often lead to late-stage failures. Modern medicinal chemistry must therefore balance potency with acceptable safety margins, incorporating predictive in silico models, early ADMET profiling, and high-content toxicity assays.

Another challenge is the synthetic complexity and cost associated with advanced small molecules, peptides, antibody-drug conjugates, PROTACs, and nucleic-acid therapeutics. Complex stereocenters, multi-step routes, rare building blocks, and specialized conjugation chemistries can hinder scalability and escalate cost of goods. Efficient, convergent, and greener synthetic routes are essential for commercial viability. Finally, reproducibility and regulatory compliance are increasingly important in modern pipelines. Consistency in synthesis, analytical characterization, impurity profiling, and batch-to-

batch reproducibility is mandatory for GMP production and regulatory approval. Additionally, evolving global regulatory frameworks—covering genotoxic impurities, elemental impurities, nitrosamines, and advanced therapy metrics—require rigorous data integrity, process validation, and comprehensive quality-by-design (QbD) approaches.

Collectively, these challenges highlight the need for integrated multidisciplinary strategies in medicinal chemistry, computational modelling, process chemistry, and regulatory science to accelerate the translation of molecules into safe, effective, and accessible medicines.²⁹

Case Studies in Molecular to Medicines:

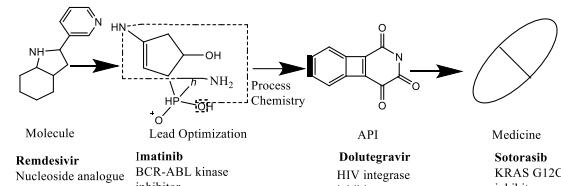


Table 3: FDA-approved drugs with synthetic highlights³⁰⁻³²

Drug (Brand/ Generic)	year	Modality	Short synthetic highlights & process notes	Process development highlights
Sotorasib (Lumakras)	2021	Small molecule, covalent inhibitor	Heterocycle-rich small molecule with a late-stage installation of an electrophilic warhead (designed to react with Cys12). Process chemistry simplified protecting-group sequences and improved yields for scale.	Structure-based warhead tuning to balance reactivity/selectivity; ADME tuning and scale-up safety controls for electrophilic intermediates.
Adagrasib (Krazati)	2024	Small molecule, covalent inhibitor	Convergent assembly of heterocyclic core with covalent warhead installed late; process literature emphasizes concise, metal-free routes for manufacture.	Medicinal chemistry optimized warhead reactivity and oral exposure; process routes designed to minimize metal residues and simplify purification.
Nirmatrelvir (Component of Paxlovid)	2023	Small molecule peptidomimetic protease inhibitor	Convergent peptidomimetic synthesis (amino-acid derived fragments) with a nitrile warhead; process development: telescoped steps and scale-friendly routes to meet demand.	Reformulation/co-packaging with ritonavir as PK booster; large-scale process intensification under
Inclisiran (Leqvio)	2021	Chemically modified siRNA	Nucleoside analogue derived from cytidine/ribose; prodrug (ester) chemistry improves oral bioavailability; process routes optimized for pandemic scale.	Prodrug masking groups and telescoped syntheses to improve yield and manufacturing throughput.
Tebentafusp (Kimmtrak)	2022	Bispecific fusion protein (Soluble TCR-anti-CD3)	Recombinant protein produced in mammalian cells; complex folding, disulfide pairing and downstream purification required.	Protein engineering to balance affinity, manufacturability and immunogenicity; downstream chromatographic strategies to remove aggregates/host proteins.

7. FUTURE PERSPECTIVES:

The future of molecule-to-medicine development will be shaped by rapid advances in computational chemistry, synthetic technologies, and translational sciences that aim to shorten development timelines and enhance clinical success rates.

1. AI/ML will reshape drug discovery through predictive design, rapid SAR generation, and

advanced ADMET modelling.

2. Continuous-flow chemistry, biocatalysis, and photoredox strategies will simplify complex syntheses and reduce cost.
3. Modalities such as siRNA, mRNA, peptides, PROTACs, and ADCs will become mainstream, requiring new synthetic and analytical solutions.

- Precision delivery systems will enhance efficacy and reduce systemic toxicity.
- Personalized medicine and genomics will support patient-specific therapeutic strategies.
- Quality-by-Design (QbD), PAT tools, and continuous manufacturing will improve reproducibility and regulatory readiness.
- Increased use of real-world evidence and adaptive clinical designs will accelerate regulatory approval.
- Integration of chemistry, biology, data science, and engineering will define the next generation of drug development

Overall, the next decade will witness a shift toward highly integrated, data-driven, and manufacturing-ready drug design, in which molecular innovation is linked seamlessly with pharmacology, toxicology, process chemistry, and regulatory science. This convergence will accelerate the translation of novel molecular entities into safe, effective, and accessible medicines, fulfilling the central mission of “molecule to medicine” research.
33-35

8. CONCLUSION:

The journey from molecule to medicine represents one of the most intellectually rigorous and socially impactful processes within pharmaceutical sciences. This review highlights the pivotal role of pharmaceutical chemistry in shaping every step of the drug development pipeline—from the rational design of bioactive molecules and synthetic route optimization to structure–activity relationship (SAR) refinement, impurity control, and final therapeutic evaluation. The continuous evolution of medicinal chemistry tools, including modern catalysis, green synthetic methodologies, high-throughput screening, and analytical characterization techniques, has substantially accelerated drug discovery while ensuring improved quality, efficacy, and safety.

Recent advancements demonstrate that scientific innovations can significantly reduce development timelines, enhance molecular precision, and improve the sustainability of chemical processes. Approaches like AI-driven drug design, advanced spectroscopic tools, QbD-based impurity management, and nanotechnology-enabled delivery systems are reshaping traditional approaches. These strategies not only boost therapeutic performance but also minimize toxicity, optimize pharmacokinetic behaviour, and enhance patient compliance.

In conclusion, the next generation of pharmaceuticals will arise from a harmonized ecosystem where innovative chemistry, predictive computational tools, and translational

pharmacology work in synergy. Such integration promises not only faster and more efficient drug development but also safer, more effective, and more accessible therapeutic solutions for global healthcare needs.

ACKNOWLEDGEMENT:

The author is thankful to Smt. N. M. Padalia Pharmacy College, Ahmedabad for encouragement and providing necessary facilities.

CONFLICT OF INTEREST:

The authors declare that there is no conflict of interest.

9. REFERENCES:

- Silverman, Richard B., and Mark W. Holladay. *The Organic Chemistry of Drug Design and Drug Action*. 3rd ed., Elsevier Academic Press, 2014. Pp-
- Mauren T., Edwards M and Verhoest P et al., “Designing Small molecules for Therapeutics Success: A Contemporary Perspective” *Drug Discovery Today*, 2022, 27(2), 538-546.
- Patrick, G. L. *An Introduction to Medicinal Chemistry*. 7th ed., Oxford University Press, 2020.
- Hughes, J. P., Kalindjian, S. B., & Philpott, K. L. “Principles of early drug discovery.” *British Journal of Pharmacology*, 2011, 162(6), 1239-1249.
- Kaitin, K. I. Deconstructing the drug development process. *Clinical Pharmacology & Therapeutics*, 2010, 87(3), 356-361.
- Swinney, D. C., & Anthony, J. “How were new medicines discovered?” *Nature Reviews Drug Discovery*, 2011, 10(7), 507-519.
- Lombardino, J. G., Lowe, J. A. The role of medicinal chemistry in drug discovery. *Nature Reviews Drug Discovery*, 2004, 3, 853-862.
- Suzuki, A. Cross-coupling reactions of organoboranes: An easy way to construct C–C bonds. *Angewandte Chemie International Edition*, 2011, 50, 6722–6737.
- Kolb, H. C., Finn, M. G., Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. *Angewandte Chemie International Edition*, 2001, 40, 2004–2021.
- Kolb, H. C., Finn, M. G., and Sharpless, K. B. “Click Chemistry: Diverse Chemical Function from a Few Good Reactions”. *Angewandte Chemie*, 2001, 40(11), 2004–2021.
- Sheldon, R. A. Green and sustainable manufacture of chemicals. *Chemical Society Reviews*, 2012, 41, 1437–1451.
- Anastas, P. T., Warner, J. C. *Green Chemistry: Theory and Practice*, Oxford University Press, 1998, pp. 30–55.
- John Warner, Amy S Cannon and Kevin Dye. “Green Chemistry: Environmental Impact Assessment Review” *Research Gate*, 2004, 24(7), 775-799.
- Knowles, W. S. Asymmetric hydrogenation. *Accounts of Chemical Research*, 1983, 16(3), 106–112.
- DiMasi, J. A., Grabowski, H. G., Hansen, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. *Journal of Health Economics*, 2016, 47, 20–33.
- Hansch, C., Leo, A. *Exploring QSAR: Fundamentals and Applications in Chemistry and Biology*, ACS, Washington DC, 1995, pp. 10–65, 145–210.
- Janas Borgel and Tobias Ritter. “Late- Stage Functionalization” *Chem*, 2020, 6(8), 1877-1887.
- Sadybekov, A. A., et al. “A structure-based drug discovery paradigm.” *Nature Biotechnology*, 2019, 37(7), 1017-1025.
- Zheng, Y., et al. Computational approaches in drug discovery and design, *Drug Discovery Today*, 2013, 18(5–

6), 263–270.

20. Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability. *Advanced Drug Delivery Reviews*, 2001, 46(1–3), 3–26.

21. Zheng, Y., et al. Computational approaches in drug discovery and design. *Drug Discovery Today*, 2013, 18(5–6), 263–270.

22. Sliwoski, G., et al. Computational methods in drug discovery. *Pharmacological Reviews*, 2014, 66(1), 334–395.

23. Schneider, G., & Baringhaus, K.-H. *Molecular Design: Concepts and Applications*. John Wiley & Sons, 2008, 277.

24. Kitchen, D. B., et al. “Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications.” *Nat. Rev. Drug Discov.*, 2004, 3, 935 – 949.

25. Bleicher, K. H., Böhm, H. J., Müller, K., Alanine, A. I. Hit and lead generation: Beyond high-throughput screening. *Nature Reviews Drug Discovery*, 2003, 2, 369–378.

26. Xiangru Tang, Howard Dai and Elizabeth Knight. “A Survey of generative AI for de novo drug design: new frontiers in molecule and protein generation” *Briefings in Bioinformatics*. 2024, 25(4), 245-312.

27. Shethi PD. HPLC-Quantitative analysis of pharmaceutical formulations; 3rd edition; CBS Publishers and Distributors, 2001, pp 182-184, 1-214.

28. ICH, Q2 (R2) Validation of Analytical Procedures: Text and Methodology International Conference on Harmonization, IFPMA, Geneva, Switzerland, 2005.

29. Barrett, J. S. “Regulatory Challenges in Drug Development.” *Clin Pharmacol Ther.*, 2018.

30. Vitaku, E., Smith, D. T., Njardarson, J. T. Analysis of FDA-approved drugs from 1985–2015. *Journal of Medicinal Chemistry*, 2014, 57(24), 10257–10274.

31. Blakemore, D. C., et al. Organic synthesis provides opportunities to transform drug discovery. *Nature Chemistry*, 2018, 10, 383–394.

32. Brown, D. G., Bostm, J. Analysis of past and present synthetic methodologies on medicinal chemistry. *Journal of Medicinal Chemistry*, 2016, 59(10), 4443–4458.

33. Kern, S. E. “Future Directions in Translational Science.” *Clin. Transl. Sci.*, 2018.

34. Vamathevan, J., et al. Applications of machine learning in drug discovery and development. *Nature Reviews Drug Discovery*, 2019, 18, 463–477.

35. Chen, H., et al. The rise of deep learning in drug discovery. *Drug Discovery Today*, 2018, 23(6), 1241–1250.